2. A New Volumetric Method for the Estimation of Dithionates.

By S. GLASSTONE and A. HICKLING.

THE surprising stability of dithionates in the presence of acids and of oxidising agents renders their estimation difficult. A gravimetric method involving fusion with a large excess of alkali nitrate was proposed by Baubigny (*Compt. rend.*, 1909, 149, 1069; see also Müller, *Bull. Soc. chim.*, 1916, 19, 8), and volumetric methods, involving the distillation either of sulphur dioxide or of bromine, were suggested by Ashley (*Amer. J. Sci.*, 1906, 22, 259), Fischer and Classen (*Z. angew. Chem.*, 1922, 35, 198), and Mayr and Szentpaly-Peyfuss (*Z. anorg. Chem.*, 1924, 131, 203). A rapid process for estimating dithionate was required and, since the published methods were tedious and did not readily give reliable results, a new method has been devised which is both rapid and accurate.

Yost and Pomeroy (J. Amer. Chem. Soc., 1927, 49, 703) found that the rate of oxidation of a dithionate in acid solution is almost independent of the concentration or nature of the oxidising agent ($K_2Cr_2O_7$, KBrO₃, or KIO₃), but probably depends on the rate of decomposition of the dithionic acid into sulphuric and sulphurous acids, which is catalysed by strong acids. It appeared possible, therefore, that by boiling a dithionate with a strongly acidified solution of dichromate quantitative oxidation to sulphate would occur : $Cr_2O_7'' + 3S_2O_6'' + 2H' = 2Cr''' + 6SO_4'' + H_2O$. Since the dichromate is stable and non-volatile, its decrease of concentration, determined iodometrically, should be a measure of the dithionate originally present. This possibility has been tested and found to provide a basis for a new volumetric method of estimating dithionates.

The following is a typical example of the procedure adopted. To 25 c.c. of a 0.0125*M*-solution of Na₂S₂O₆,2H₂O, prep. by Baubigny's method (*Compt. rend.*, 1910, **150**, 466) and checked by gravimetric analysis (Baubigny, *ibid.*, 1909, **149**, 1069), were added 10 c.c. of 0.025*M*-K₂Cr₂O₇ and 10 c.c. of approx. 10*N*-H₂SO₄; the mixture was boiled for 1 hr., H₂O being added from time to time to replace loss by evaporation. After cooling, 5 c.c. of 10% KI aq. were added and the liberated I was titrated with Na₂S₂O₃, starch being used as indicator; no difficulty was experienced in obtaining a sharp end-point. In two expts., 17.52 and 17.49 c.c. of Na₂S₂O₃ aq. were used; mean = 17.51 c.c. The 10 c.c. of 0.025*M*-K₂Cr₂O₇ required 30.01 c.c. of the Na₂S₂O₃ aq.; hence the S₂O₆" present in 25 c.c. of the solution used = 12.50 × 10.0/30.01 c.c. of 0.025*M*-K₂Cr₂O₇. The concn. of the S₂O₆" solution is thus found to be 0.0125*M*, in exact agreement with the actual value.

If it is required (cf. Haber *et al.*, Ber., 1932, 65, 729; Z. physikal. Chem., 1932, B, 18, 103) to analyse mixtures of SO_3'' and S_2O_6'' , the former may be removed by boiling with dil. (approx. 0.5N) AcOH for about 15 min., and the S_2O_6'' then determined by the method described. The AcOH must be freed from oxidisable impurities by distillation from CrO_3 . The SO_3'' in the mixture may be estimated by allowing the standard $K_2Cr_2O_7$ aq. to liberate I from KI in the cold and adding the mixture to be analysed; the excess I is titrated with $Na_2S_2O_3$. Under these conditions the SO_3'' only is oxidised and the S_2O_6'' remains unattacked. The method has been found satisfactory for a number of mixtures of SO_3'' and S_2O_6'' ; in addition to its simplicity, it has the merit of requiring only one standard solution, *viz.*, $K_2Cr_2O_7$.

THE UNIVERSITY, SHEFFIELD.

[Received, November 23rd, 1932.]